Chlorophenol Degradation in Papermaking Wastewater through a Heterogeneous Ozonation Process Catalyzed by Fe-Mn/Sepiolite
نویسندگان
چکیده
Heterogeneous Fe-Mn/sepiolite catalysts were prepared by the coprecipitation method, followed by heat treatment. The catalysts were characterized by several techniques; analysis by X-ray fluorescence (XRF) and scanning electron microscopy (SEM) confirmed the existence of fine Fe and Mn particles in the catalysts. Compared to natural sepiolite, the specific surface area of the Fe-Mn/sepiolite catalyst was increased from 125.2 to 412.7 m2/g, as measured by Brunauer-Emmett-Teller (BET) analysis. The activity of the catalysts was evaluated by the ozonation degradation of p-chlorophenol solution, and the results showed that the catalysts were highly effective, as the removal rate of p-chlorophenol was more than 98.5%, achieved in 25 min at a 20% (w/w) Mn content. The catalysts were then used for chlorophenol degradation in papermaking wastewater through a heterogeneous ozonation process. At optimal conditions, a 98% chlorophenol removal rate and a 58% COD removal efficiency were achieved in 30 min, and pollutants in the treated wastewater were more biodegradable and less toxic than in raw water. Moreover, the prepared catalysts remained stable during successive catalytic ozonation runs. The possible reaction pathway was also proposed.
منابع مشابه
Comparing activated carbon and magnetic activated carbon in removal of linear alkylbenzene sulfonate from aqueous solution by heterogeneous catalytic ozonation process
Activated carbon from pine cone (PCAC) was used as a precursor to prepare Fe3O4/magnetic activated carbon (MPCAC). Here, the removal of linear alkylbenzene sulfonate (LAS) was studied using catalytic ozonation process (COP) in exposure to MPCAC. Subsequently, it was compared with PCAC. Moreover, the effects of solution's initial pH, catalyst dosage, and the time of ozonati...
متن کاملThe Effect of pH on Nanosized ZnO Catalyzed Degradation of 4-Chloro-2-Nitrophenol via Ozonation
This research evaluates the efficiency of nanosized ZnO in the catalytic ozonation of 4-chloro-2-nitrophenol and determines the effect of pH on heterogeneous catalytic ozonation. The combined use of ozone and ZnO catalyst leads to conversion of 98% 4-chloro-2-nitrophenol during 5 min. In addition, it was found that in ZnO catalytic ozonation, the degradation efficiency of 4-chloro-2-nitrophenol...
متن کاملDegradation of 4-Nitrophenol from industrial wastewater by nano catalytic Ozonation
ABSTRACT: In this project, a nano catalyst (TiO2) and ozone combined with each other and they were used for the removal of 4-nitrophenol (4NP) in industerial wastewater. The effect of some operational parameters such as initial pH (3-9), the concentration of pollutant (20-80 mg/L), and amount of TiO2 were investigated. In O3/TiO2 process, the anion radical formed before the production of hydro...
متن کاملDegradation of 4-Nitrophenol from industrial wastewater by nano catalytic Ozonation
ABSTRACT: In this project, a nano catalyst (TiO2) and ozone combined with each other and they were used for the removal of 4-nitrophenol (4NP) in industerial wastewater. The effect of some operational parameters such as initial pH (3-9), the concentration of pollutant (20-80 mg/L), and amount of TiO2 were investigated. In O3/TiO2 process, the anion radical formed before the production of hydro...
متن کاملPhotocatalytic process using magnesium oxide nanoparticles for amoxicillin removal from aqueous solution
Background & Aim: Excessive consumption of antibiotics and their incomplete metabolization in human and animals, as well as inadequate removal by conventional waste water system leads to the release of these chemicals into the environment. Antibiotics have adverse effects including bacterial resistance, digestive disorders and genotoxic. Therefore the aim of this study was to survey amoxicillin...
متن کامل